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Abstract

The present paper discusses the importance of interpreting both
regression coefficients and structure coefficients when analyzing
the results of multiple regression analysis, particularly with
correlated predictor variables. The concepts of multicollinearity
and suppressor effects are introduced, along with examples from the
previously published articles that demonstrate how erroneous
conclusions are drawn when researchers fail to consult both beta
weights and structure coefficients (or both beta weights and zero-

order correlations).
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Roughly a dozen years ago, Jacob Cohen (1988), a preeminent
author, critic, and research methodologist in the behavioral
sciences, declared that:
During the past decade, under the impetus of the
computer revolution and increasing sophistication in
statistics and research design among behavioral
scientists, multiple regression and correlation
analysis (MRC) has come to be understood as an
exceedingly flexible data analytic procedure
remarkably suited to the variety and types of
problems encountered in behavioral research. (p.
407) 1
Fifteen yearg éarlier, Kerlinger and Pedhazur (1973)
enthusiastically endorsed multiple regression:
It is a powerful analytic tool widely applicable to
many different kinds of research problems. It can be
used effectively in sociological, psychological,
economic, political, and educational research. It
can handle continuous and categorical variables. In
principle, the analysis is the same. Finally, as we
will abundantly show, multiple regression can do
anything the analysis of variance does--sums of
squares, meah squares, F ratios--and more. (pp. 2-3)
Unlike ANOVA, there are no constraints on the types of independent
variables one can employ when utilizing multiple regression.

Regression can be used when the predictor variables are correlated
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or uncorrelated, continuous or nominal.

Given the prominent role that regression should and does have
in the behavioral sciences (cf. Elmore & Woehlke, 1988; Willson,
1980), the purpose of the present paper is to argue the importance
of interpreting both regression coefficients and structure
coefficients when analyzing the results from multiple regression
analysis, particularly with correlated predictor variables. First,
the General Linear Model (GLM) is introduced as a framework for the
remaining discussion. Second, the bivariate and the multiple
regression model is introduced. Third, the use structure
coefficients as an interpretation aid is described.

Fourth, the relative interpretive values of beta weights and
structure coefficients are explored. Fifth, a case is made that
both sets of coefficients usually must be interpreted (Heidgerken,
1999). Finally, published examples of both correct and incorrect
interpretations of regression results, based on what coefficients
were interpreted, are cited.

The General Linear Model (GLM)

Three Levels of the General Linear Model

Multiple regression is related to all other parametric
analyses via the General Linear Model (GLM) (Baggaley, 1981). Cohen

(1968) noted that while linear multiple regression analysis

subsumes all univariate parametric methods (e.g., t test, ANOVA,
ANCOVA, r) as special cases, multiple regression has practical
advantages:

The practical advantages of MR (multiple regression)
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...will be seen to constitute a very flexible
general system for the analysis of data in the most
frequently arising circumstance, namely, where an
interval scaled or dichotomous (dependent) variable
is to be "understood" in terms of other
(independent) variables, however scaled. (p. 427)

Knapp (1978) extended Cohen’s arguments by showing that all
common parametric tests of statistical significance (all the
parametric univariate methods, the chi-square test of independence
of two variables, and MANOVA, MANCOVA, and descriptive discriminant
analysis ([Huberty, 1994]) can all be treated as special cases of

canonical correlation analysis, which is the general procedure for

investigating the relationships between two sets of variables. Then
Bagozzi, Fornell, and Larcker (1981) noted that all univariate and
multivariate statistical methods are subsumed by the most general

case of the General Linear Model: structural equation modeling

(SEM), which has more utility in direct theory testing than
canonical correlation analysis, and also directly incorporates
measurement integrity as part of estimation (Thompson, in press).

Specifically, canonical correlation analysis cannot determine
the statistical significance of individual parameter estimates or
relax selective assumptions of the canonical model based on theory
or observed data. SEM is a more flexible tool for data analysis and
the problem of determining statistical significance of each
parameter estimate is overcome by using estimated standard errors

to calculate "critical ratios" (or t’s) for the evaluation of
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individual weights and covariances.

Weights as a Common Feature of all GLM Methods

One aspect of the General Linear Model is that all classical
univariate and multivariate tests share in common the application
of weights to the measured/observed variables to estimate each
person’s score on each synthetic/latent variable.

As conventional parametric methods are all
correlational 1least square analyses, all such
analyses involve weights similar to the beta weights
generated 1in regression. These weights are all
analogous, but are given different names in
different analyses (beta weights in regression,
pattern coefficients in factor analysis,
discriminant functions coefficients in discriminant
analysis), mainly to obfuscate the commonalities of
all parametric methods, and to confuse graduate
students. (Thompson, 1992a, pp. 906-907)

In regression in particular, the independent or predictor
variables are differentially weighted wusing "unstandardized
weights" or "standafdized weights" so that the correlation between
the composite scores thus obtained and the measured dependent
variable, or the criterion, is maximized (Pedhazur, 1997). Using
the regression equation and scores on the independent variables,
one can calculate each person’s score on the latent composite
variable.

When the multiplicative weights are applied to the predictor
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variables converted to standard score form, the "standardized"
weights are called beta (f) weights. [In actuality, the weights as
multiplicative constants cannot be standardized, and are called
this only because they are applied to the measured predictor
variables themselves in standard score form.] When the weights are
applied to unstandardized predictor variables, they are called "b"
weights.

Multiple Correlation and Regression

Regqression Weights

Bivariate linear regression using a single predictor variable
"X" and a single criterion "Y"- can be extended to multiple
correlation and multiple linear regression (Hinkle, Wiersma & Jurs,
1998; Huberty & Petoskey, 1999). In multiple correlation, the
relationship between the criterion variable "Y" and the predictor
variables (X,, X,, e Xy) is determined, whereas in multiple
regression, scores.oﬁ-the criterion variable "Y" are predicted
using multiple predictors (X;,, X,, ..., XJ). In bivariate 1linear
regression, a straight line is fit to the scatterplot of points;
the equation of this line, called the regression equation, has the
form Yhat; = a + Db(X;), where Yhat; is the predicted value of the
criterion variable for a given X value on the predictor variable.
The regression coefficient, b, is the slope of the line, and the
regression additive constant, a, is the Y axis intercept of the
regression line.

In multiple 1linear regression, we again have a single

criterion variable "Y", but we have k predictor variables (i.e., k
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is greater than or equal to two). These predictor variables are
combined into an equation, called the multiple regression equation,
which can be used to predict scores on the criterion variable
(Yhat;) from scores on the predictor variables (X;’s). The general
form of the equation is:

Yhat = bX, + bX;, + ... bX, + a,

where the b’s are the "unstandardized" regression coefficients for
the respective predictor variables and a is the regression additive
constant. Note that in the two predictor variable case, for
example, when X, and X, are both equal to 0, or if both b weights
equal zero, the related Yhat; score equals the a weight.

Unfortunately, the b weights are jointly sensitive to (a) the
correlation of each predictor with Y, (b) the correlations among
the predictor variables, and (c) the variability of predictor
variables in relation to the dependent variable Y. Each of these
conditions create problems when interpreting b weights, because the
weights are confounded by these various influences. That is,
several measured predictor variables might all have b weights of
+2.0, but the weights might be due to very different combinations
of these three influences. This makes difficult or impossible the
interpretation of regréssion results based solely on examination of
"unstandardized" weights.

To resolve these difficulties, '"standardized" regression
coefficients are usually computed to facilitate comparisons across
variables with different standard deviations, scales, or metrics.

The beta weights are computed using the formula:
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beta = b (SDy / SDy).
The b and beta weights will be equal when (a) either is zero or (b)
the standard deviations of both variables are equal (Thompson,
1992b) .

According to Cooley and Lohnes (1971), sbme researchers judge
the relative contributions of the predictors in the regression
equation based on the magnitudes of their respective beta weights.
They also pointed out a serious drawback to relying on beta weights
to interpret regression results:

our tendency to de-emphasize the beta weights stems

from experience with the phenomenon of extreme

fluctuation of regression weights from sample to

sample when the sample size is small. Even when the

sample size is moderate, there is substantial

fluctuation. (p. 55)
The unwary researcher might be tempted to regard the predictor
variable having the‘befa weight with the largest absolute value as
the best predictor.

Most frequently, the interpretation of regression results
focuses on an evaluation of the beta () weights because they are
not affected by variances (standard deviations) in the measured
variables. As a variable’s beta weight deviates further from zero
in either a positive or negative direction, the predictor variable
is being assigned greater influence in determining the scores on
the latent criterion composite variable. Conversely, as a beta

weight approaches -zero, the measured predictor variable is

Ed f-{
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ostensibly less influential.

However, it is possible, as we shall see, for a predictor
variable to have a near-zero beta weight and to still have strong
predictive capability when the predictive power of that variable is
arbitrarily hidden for a given data set (as in the case of
multicollinearity between predictor variables). Furthermore, it is
also possible for a predictor that is perfectly uncorrelated with
the dependent variable and to have the largest beta weight for a
given analysis. Clearly, beta weights do not tell the whole story
for a given regression analysis!

Impacts of Collinearity on the Weights and Their Standard Errors

The condition of predictor variables being correlated with
each other is variousiy called multicollinearity, collinearity, or
ill conditioning. Belsley, Kuh, and Welsch (1980) noted that
multicollinearity presents both computational and statistical
problens:

Computationally, this means that solutions to a set
of least-squares normal equations (or, in general, a
solution to a system of linear equations) contains a
number of digits whose meaningfulness is limited by
the conditioning of the data... This computational
~ problem in the calculation of least-squares
estimates may be minimized, but never removed. The
intuitive distrust held by users of least squares of
estimates based on ill-conditioned data is therefore

justified... [because] statistically... collinearity
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causes the conditional variances [of the weights and

their standard errors] to be high. (pp. 114-115)
Additional problems with high collinearity between independent
variables identified by Pedhazur (1982) include: (a) imprecise
estimation of regression coefficients (beta weights) because slight
fluctuations due to sampling error or random error in the presence
of multicollinearity may lead to very large fluctuations in the
estimation of regression coefficients, and (b) even reversal of the
signs of regression coefficients.

Structure Coefficients as an Alternative Interpretation Aid

Definition and Calculation

Once composite predicted scores (Yhat,) are computed for all
participants, the correlation between each measured independent
variable and the latent/synthetic composite scores is referred to
as the strucfure coefficient (i.e., r,), structure correlation, or
"loading". Pedhazur (1997) noted that the 'squared structure
coefficient indicates the proportion of variance shared by the
variable with which it is associated and the vector of composite
scores" (p. 898). In regression one simple alternative way of
calculating structure coefficients is by using the formula:

r, =ry / R,
where the structure coefficient for independent variable x equals
the correlation between the dependent variable y and the predictor
X (i.e., the =zero-order correlation) divided by the multiple
correlation of y with all of the independent variables as a group.

The GIM Perspective on Structure Coefficients

i2
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It is intriguing that throughout the General Linear Model the
use of structure coefficients is heavily emphasized. As Thompson

and Borrello (1985) noted, this reality suggests the potential

importance of also interpreting structure coefficients when

evaluating regression results, insofar as reqgression is itself a

prominent member of the GLM family. In Huberty’s (1994) words,

If a researcher 1is convinced that the use of
structure r’s makes sense 1in, say, a canonical
correlation context, he or she would also advocate
the use of structure r’s in the contexts of multiple
correlation, common factor analysis, and descriptive
discriminant analysis. (p. 263)
For example, as regards factor analysis, which is actually an
implicit part of canonical correlation analysis and all the

parametric methods subsumed by CCA (Thompson, 1984, pp. 11-16),

Gorsuch (1983) emphasized that a "basic matrix for interpreting the

factors is the factor structure" (p. 207, emphasis added).
Similarly, as regards descriptive discriminant analysis, Huberty
(1994) noted that "construct definition and structure dimension
[and not hit rates] constitute the focus of a descriptive
discriminant analysis" (p. 206, emphasis added).

And most researchers concur that the interpretation of
structure coefficient‘s is essential to understanding canonical
results. As Meredith‘k1964, p. 55) suggested, "If the variables

within each set are moderately intercorrelated the possibility of

interpreting the canonical variates by inspection of the
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appropriate regressibn weights [function coefficients) is
practically nil." Levine (1977) was even more emphatic:

I specifically say that one has to do this
[interpret structure coefficients] since I firmly
believe as long as one wants information about the
nature of the canonical correlation relationship,
not merely the computation of the [synthetic
function] scores, one- must have the structure

matrix. (p. 20, emphasis in original)

Interpretive Value of Weights and Structure Coefficients

Standardized Weights

The argument in favor of consulting standardized weights when
interpreting the origins of regression effects is that these
weights are used to create the composite scores actually correlated
in regression. That is, the bivariate r between the y and the Yhat
scores is the multiple R. A predictor with a multiplicative weight
of zero does not affect the computation of the latent Yhat scores,
and indeed is obliterated by the multiplicative constant of zero.
However, there are problems associated with solely interpreting the
weights. :

No distinct range. As Thompson (1994) explained, "The beta

weights in a regression analysis are the correlation coefficients
between the respective predictors and the dependent variable only
when those predictors that are correlated with the dependent
variable are perfectly uncorrelated with each other" (p. 20). Thus,

whenever predictors are correlated, as is often the case in
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research modeling a reality in which many variables are somewhat
related to each other, the beta weights do not have a distinct
range. This means that the weights can only be interpreted in
relation to each other within a given study.

Not Measures of Relationship. Furthermore, it is clear that

when the predictors are correlated the "standardized" weights are
not correlation coefficients and absolutely may not be interpreted
as indices of the relationships of the predictors with the outcome
variable, notwithstanding the fact that exactly this
misinterpretation is frequently offered in the 1literature.
Regression weights are influenced by the relationships of the
predictor variables with y, but the weights as statistics do not
only evaluate these relationships, and therefore cannot correctly
be used as indices of relationship.

That 1is, a measured predictor variable with a negative
relationship with y (aﬁd thus a negative structure coefficient) may
have a negative f weight, but that same predictor may also have
either a zero or a positive f weight. Conversely, a measured
predictor variable with a positive relationship with y (and thus a
positive structure qoefficient) may have a positive  weight, but
that same predictor may also have either a zero or a negative f
weight. Finally, a predictor with a zero relationship with y (and
thus also a zero structure coefficient) may have a zero 8 weight,
but could also have either a positive or a negative f yeight.

Context Dependence. Also, too few researchers appreciate the

fact that the regression weights may change radically with the

9
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deletion or the addition of even a single predictor variable. That
is, the values othhg weights are highly context-dependent. As
Thompson (1999b) embhasized, "Any interpretations of weights must

be considered context-specific. Any change in the variables in the

model can radically alter all of the weights" (p. 48, emphasis in
original).

Put differently, the regression weights are correct only if
all the corréct predictors are employed, and only the correct
predictors are employed. This means that the model is "correctly
specified." Unfortunately, as Pedhazur (1982) has noted, "The rub,
however, is that the true model is seldom, if ever, known" (p.
229). And as Duncan (1975) has noted, "Indeed it would require no
elaborate sophistry to show that we will never have the ’‘right’

model in any absolute sense" (p. 101).

Structure Coefficients

Cooley and Lohnes (1971) were early advocates for the
interpretation of structure coefficients in regression research.
Thorndike (1978) also pointed out the hazards of only interpreting
beta weights when reviewing the results of multiple regression
analyses: ‘

It might be arguied that the beta weights provide the
required inforﬁation, but such is not the case. The
beta weights give us the relative contribution of
each variable to the variance of the composite, but
to the extent that the X variables are correlated,

the one with the 1larger correlation with the
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criterion will receive a large weight at the expense
of the other... [and] a description in terms of the
beta weights would give a false impression of the
relationship. Therefore, when description of the
composite of X variables is desired, it is necessary
to compute the correlations of the X variables with
the composite. (pp. 153-154)

Structure coeffiﬁients do have the advantage of having a
distinct potential range (i.e., from -1 to +1). And consultation of
these coefficients make sense, given the previous realization that
R is the bivariate r of y with Yhat. That is, given R focuses on
the Yhat scores, it makes sense to want to understand the
underlying structure of the latent variable. As Thompson (1999a)
recently noted, "the reason that structure coefficients are called
’structure’ coefficients is that these coefficients provide insight
regarding what is the nature or structure of the underlying
synthetic variableskof_the actual reséarch focus" (p. 15).

Disagreements in the Literature

However, there has not been unanimous agreement among
researchers on the utility of structure coefficients. For example,
Harris (1992) stated that structure coefficients can be potentially
misleading and argued that they should be abandoned in favor of
interpreting weights. |

A somewhat different view was offered by Pedhazur (1982, p.
691), who noted that structure coefficients are "simply zero-order

Correlations of independent variables with the dependent variable

F
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divided by a constant, namely, the multiple correlation
coefficient. Hence, the zero-order correlations provide the same
information." In response, Thompson and Borrello (1985) argued that
"the interpretation bf only the bivariate correlations seems
counter-intuitive. It appears inconsistent to first declare
interest in an omnibus system of variables and then to consult
values that consider the variables only two at a time" (p. 208).

However, it is clear that interpretation of either (a) beta
weights and structure coefficients or (b) beta weights and the
zero-order correlations of the predictors with y will both yield
identical interpretations. The point is that beta weights alone
should not be the basis of interpretation, except when predictors
are perfectly uncor;elated, and thus each predictor’s 8 equals its
r with y. |

More recently, Pedhazur (1997) argued that "because one may
obtain large structure coefficients even when results [i.e., R’} are
meaningless, their wuse in such instances may lead to
misinterpretations" (p. 899). He then presented a hypothetical data
set involving an R! of .00041, for which the rg for the first
predictor variable is .988. Pedhazur then noted that "These are
impressive coefficients, particularly the first one... But what is
not apparent from an examination of these coefficients is that they
were obtained from ﬁeéningless results" (p. 899).

This objection seems somewhat strange. As Thompson (1997)
explained,

All analyses are part of one general linear model

e
0
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(cf. Thompson, 1991). When interpreting results in
the context of this model, researchers should
generally approach the analysis hierarchically, by
asking two questions:

--Do I have anything? (Researchers decide this
question by 1looking at some combination of
statistical significance tests, effect
sizes..., and replicability evidence.)

--If I have something, where do my effects
originateé (Researchers often consult both the
standardized weights implicit in all analyses
and structure coefficients to decide this
question... (p. 31)

As Pedhazur himself acknowledged (p. 899) should done as regards
discriminant and canonical correlation analyses, in regression as
well one would only bother to ekamine the structure coefficients
after one has determined that the results are noteworthy. So, given
this hierarchical contingency-based approach to the interpretation
of GLM results, this cgiticism of Pedhazur (1997) seems irrelevant.

Thoughtful Resolution

As Figure 1 demonstrates, it is possible to have a predictor
variable with the greatest predictive potential (X,) lose credit to
two or more other predictors (X, and X;) whose predictive area
overlaps that of the first predictor. The X, predictor may
arbitrarily be given no credit for its predictive potential and

could have a beta weight of 2zero. In such an instance, it is

fex b
(€n)
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important to have information about the predictive potential of
that variable, information that is easily gained by examining each

predictor variable’s structure coefficient.

Insert Figure 1 About Here.

In a dramatic example of how misleading the examination of
only regression coefficients can be in the case of collinearity,
Thompson and Borrello (1985) referred to a study (Borrello, 1984)
investigating the personality correlates of test-wise skills. The
researcher deliberately introduced collinearity into the study by
measuring some constructs = . repetitively. This "multi-
operationalization" is particularly appropriate in the social
because our measures of abstract constructs are so fallible.

As shown in Table 1, an examination of the beta weights alone
indicates that "Sensing" was the best predictor (f = -.310),
followed by "Thinking" (8 = .193) and "Extravert" (8 = .148).
However, an examination of the structure coefficients reveals an
altogether different story. "Sensing" was most correlated with the
Yhat variable (r, = -.921), but "Intuition," the predictor variable
with the second highest absolute-value structure coefficient (r, =
.783), had the third-most near-zero beta weight among the eight

predictor variables (beta = -.059)!

Insert Table 1 About Here.

As Thompson and Borrello (1985) emphasized:

A slight fluctuation in a few bivariate correlation

20
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coefficients could radically alter a beta weight for
a variable which is highly correlated with other
predictors and which is only slightly more
correlated with the <criterion. If a variable’s
slight advantage in predictive power involves
sampling or measurement error, then in sUbsequent
studies the variable’s beta weight will be
dramatically closer to zero. Note, however, that the
structure coefficients for the variables,
"Intuition" (.783) and "Sensing" (-.921), suggest
that both variables are noteworthy predictors of
test-wiseness. (pp. 207-208)

Unlike beta weights, strﬁcture coefficients are unaffected by
multicollinearity and thus provide the researcher with different
information than beta weights. A predictor variable can have a
near-zero beta weight and still be a good predictor of the
criterion variable if the variance that the predictor could explain
is arbitrarily assigned to another predictor variable.

Of course, as pointed out earlier, the examination of beta
weights and structupe‘coefficients is not an "either/or" question.
Both sets of resﬁlﬁs can be consulted to answer different
questions, as Thorndike (1978) pointed out. .Indeed, it is only by
examining both coefficients that intriguing data dynamics can be
detected.

Examples from the Counseling Literature

Bowling (1993) reported that the Journal of Counseling
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Psychology published 20 articles that used multiple regression

analysis between January, 1990 and April, 1993. Of the 20 studies,
only three reported structure coefficients in their results and
only a few provided a correlation matrix that would allow an
ambitious researcher to derive them post facto. My more recent
review of articles published between January, 1996 and April, 1999
identified 22 articlés using multiple regression. Clearly, the
popularity of this statistical techniquekhas not waned in one of
the more prestigious counseling journals.

A Positive Example

The proper examination of both beta weights and structure
coefficients was demonstrated in a multiple regression design by
Longo, Lent, and Brown (1992) who examined the relationship between
social-cognitive variables and motivation to participate in
counseling. As shown in Table 2, an examination of beta weights
alone indicates that ﬁOutcome expectations" is only a moderately
useful predictor éfr "Motivation" (B = .26), and that two
predictors, "Self-efficacy" (8 = .43) and "Problem severity" (B =
.28) are assigned more credit for predicting variance in the

criterion variable than "Motivation".

Insert Table 2 About Here.

However, an examination of the structure coefficients reveals
that "Outcome expectations" has a very high structure coefficient
(r, = .90) and that this predictor alone accounts for 81% of the

total variance accounted for by all five predictors. The
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discrepancy is due to high multicollinearity between "Outcome
expectations" and three of the other four predictors, which were
arbitrarily assigned more credit for capacity to explain variance
in the criterion variable shared by the predictor variables.

In this study, the authors did not calculate the structure
coefficients, but correctly examined the zero-order correlations
between the predictor variables and took the high degree of
multicollinearity into account when interrupting their results
(Longo, Lent, & Brown, 1992): "Thus, despite the correlations
between self-efficacy and outcome beliefs, the former explained
somewhat more unique variance in motivation" (p. 450). As noted
earlier, the zero-order correlations between predictor variables
yield interpretationsﬁequivalent to those arising from structure
coefficients, although the two sets of coefficients are expressed
in a different metric (unless R = 1.0).

Example of Misinterpretation of Direct Effects

A recent article published in the American Journal of Family

Therapy (Larson & Wilson, 1998) shows that, despite warnings to the
contrary, leading counseling journals continue to publish studies
that do not examine structure coefficients or zero-order
correlations in addition to regression coefficients. Larson and
Wilson (1998) studiea ghe role of early family-of-origin influences
on difficulties with later career decision-making. In the "Results"
section of their report, they concluded that "Intimidation, trait
anxiety, and class in college directly predicted career decision

problems (betas = .09, .40, and -.16, respectively)" (p. 45).
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Table 3 provides the beta weights as given in the study along

with structure coefficients not reported in the article but derived
here through supplemental analysis. Had structure coefficients been
interpreted in conjunction with regression coefficients, the

researchers might have noticed that in relation to other predictors

“"Fusion" was substantially correlated with the Yhat variable, as

shown by this variable having the second-largest absolute value
among the eight structure coefficients. The near-zero beta weight
for "Fusion" (-.04) can therefore be assumed to be a consequence of
multicollinearity between the predictor variables in which the
other predictor variables were arbitrarily assigned credit for the
predictive power of "Fusion," not because "Fusion" is a useless

predictor.

Insert Table 3 About Here.

Example of Misinterpretation of Indirect or "Suppressor" Effects

A study completed by Denham and Burton (1996) is an excellent
example of failing fo-detect suppressor effects (Lancaster, 1999)

in predictor variables by neglecting to consult structure

coefficients in addition to beta weights. Suppressor variables are

good predictors that directly predict little or no variance in the

criterion variable, but which nonetheless indirectly improve

prediction by making the other predictors more effective (Horst,
1966) .
In the study, the researchers concluded that the intervention

(B = .666) and the interaction between the intervention and pretest

'R
o
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(B = -.696) were the only statistically significant contributors to
teacher-rated competence, the criterion variable. Despite
presenting zero-order correlations (which are related to structure
coefficients) in the same table as the regression coefficients, the
correlations betweeﬁ predictors were not taken into account when
the results were interpreted. Had the researchers compared the beta
weights with the structure coefficients, as shown in Table 4, it
would have been apparent that the Intervention (B = .666) and the
Intervention X Pretest (f = -.696) were nearly pure suppressors
with large beta weights and near-zero structure coefficients (r, =

.04 and .02, respectively).

Insert Table 4 About Here.

In this case, these two predictor variables effectively
removed extraneous variance or improved other predictors without
directly accounting for variance in the criterion variable. In this

instance, the researchers erroneously attributed explained variance

to predictors that were almost completely uncorrelated with the
criterion variable, but that made other predictor variables better
by removing the bad varjance in the other predictors!
Summary

It has been argued here that regression researchers frequently
encounter collinear Qredictor variables, because this situation
merely mirrors a reélity in which predictors are often correlated,
and because researchers frequently intentionally select collinear

predictors in an effort to multi-operationalize fallible predictor

&O
(1]
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variables. In these éituations interpretations based solely on
consultation of "standardized" regression weights can lead to
grossly distorted conclusions. Examples from published literature
were cited to illustrate these disturbing and fully avoidable

occurrences of result misinterpretation.
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Table 1
Canonical Function and Standardized Regression () Coefficients and
Zero-order Correlations and Structure Coefficients

Canonical
Predictor Function
Variable Coefficients B Iy r,
Extravert -.371 X R = -.148 -.051 / R = -.128
Sensing -.776 X R = -.310 -.368 / R = -.922
Thinking -.484 X R = -.193 -.192 / R = -.481
Judging -.131 X R= -.052 -.117 / R = -.293
Introvert -.121 X R = -.048 -.052 / R = .130
Intuition .149 X R = .059 .313 / R = .784
Feeling -.275 X R = -.110 .108 / R = .271
Perceiving -.215 X R= -.086 -.109 / R = .273

Note. These data were adapted from Thompson and Borrello (1984).
Decimals were rounded here to three places. R = .399.

Table 2
Regression Coefficients, Zero-order Correlations, and Structure
Coefficients For Longo, Lent and Brown (1992)

Predictor B Ty r,
Gender .13 .28 .41
Problem severity .28 .31 .45
Counselor experience --.06 -.08 -.12
Self-efficacy .43 .53 .77
Outcome expectations .26 .62 .90
Note. R’ = .48; R = .69.

b
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Table 3 !
Regression Results for a Study Investigating Family of Origin
Influences on Career Decision Problems (Larson & Wilson, 1998)

Predictor B r,

Gender -.17 -.15
Age .01 -.26
Income .06 .11
Class -.16 .34
Intimidation .09 .43
Fusion -.04 .51
Triangulation .07 .31
Anxiety .40 .85

Note. R?> = .22; R = .47.

Table 4
Prediction of Post-test Teacher-Rated Social Competence (Denham &
Burton, 1996)

Predictor B r,

Intervention .666 .04
Age -.541 .42
Gender .544 .48
Pretest -.824 .78
Gender X Pretest -.424 .80
Intervention X Pretest -.696 .02
Age X Pretest 1.790 .78

Note. R’ = .291; R = .540.

()
O
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Figure 1

Venn Diagram for a Three Predictor Variable Regression Study

X
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